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ABSTRACT 

The wide-bandgap semiconductor ZnO has gained major interest in research community for its unique properties and 
wide range of applications. In this review article, we present synthesis techniques and a few emerging applications for 
ZnO. Common techniques for growing ZnO films are discussed briefly, and a detailed discussion of MOCVD growth of 
ZnO is provided citing previous experimental reports on this technique by our group and others. A few important and 
distinctive uses of ZnO are discussed for various applications focusing on the current limitations of ZnO to realize its 
feasibility in these applications. 
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1. INTRODUCTION 
With the increased demand for high power and high temperature optoelectronic devices, wide-bandgap semiconductor 
materials have drawn major attention from researchers and industry in recent years. These materials have additional 
advantages including light emission/absorption in the UV/visible range, broad transmission, a large piezoelectric effect, 
high breakdown voltages, and low electronic noise. Zinc oxide (ZnO) is a compound semiconductor with wide bandgap 
tunable from 3 to 4 eV with doping or alloying. Its unique advantages over other II-VI and III-V wide-bandgap materials 
include lower processing costs, low-level of toxicity, and natural abundance. The relatively small refractive index of 
ZnO compared to GaN results in larger exciton binding energy (60 meV), much greater than kT at room temperature 
guarantees efficient luminescent and photovoltaic characteristics. The wurtzite structure with tetrahedral arrangement is 
the most stable form of ZnO with lattice parameters a=3.25 Å and c=5.21 Å which make it a potential substrate for 
another widely used material, gallium nitride (GaN) [1-4]. This allows fabrication of useful heterostructures for complex 
optical and electronic devices. The c/a ratio of ZnO wurtzite structure is 1.603 which is very close to the ideal ratio 
(1.633) for highly stable structures. The non-centrosymmetric wurtzite structure of ZnO gives rise to large piezoelectric 
and pyroelectric coefficients resulting in its potential use in mechanical sensors and nanogenerators [5]. Extensive 
research has been carried out on the fabrication and use of ZnO nanostructures owing to its stable morphological 
structure. In addition, the use of amorphous oxide semiconductors has appeared as a new technology which may 
overcome many of the problems associated with conventional silicon technology [6]. A review of recent advances in 
oxide semiconductors shows that amorphous ZnO appears having most desirable properties of all the amorphous oxide 
semiconductors [7]. The high electron mobility and wide bandgap of ZnO make it a suitable candidate for fabrication of 
high electron mobility transistors (HEMTs) [8-10]. Aluminum- or gallium-doped ZnO has recently gained much 
attention as a suitable replacement for indium tin oxide (ITO), which is comparatively expensive material and less stable 
in hydrogen plasma, in fabrication of transparent conducting oxide (TCO) thin films [11-16]. 

Previously, our group reported several investigations of ZnO as a potential substrate technology for GaN based devices 
due to its close lattice match, stacking order match, and similar thermal expansion coefficient [17-20]. In later stages of 
this work, a sapphire transition layer was deposited on ZnO using atomic layer deposition (ALD) to prevent zinc and 
oxygen diffusion into the GaN epilayers as well as to assist nitride epilayer growth for improved film quality [21-25]. It 
has been demonstrated that the lattice match of ZnO substrates can be exploited for the suppression of phase separation 
in InGaN and AlGaN layers. Using a custom-built metal organic chemical vapor deposition (MOCVD) system, we have 
studied reactor dynamics of ZnO growth by exploring the influence of different parameters and growth conditions on the 
structural, optical, and electrical quality of ZnO films. In addition, some novel characteristics of ZnO such as magnetic 
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properties for spintronic applications [26-29], reflective second harmonic generation [30], optical waveguiding [31], and 
neutron detection [32] have been investigated. Recently, we have grown ZnO thin films with different thicknesses on 
sapphire substrates using MOCVD to demonstrate that crystal quality degrades with increasing film thickness due to the 
lattice mismatch with the substrate and growth rate significantly decreases with increasing chamber pressure [33]. 

In this paper, we present a brief review of synthesis and applications of ZnO thin films and nanostructures with special 
emphasis on the metal oxide chemical vapor deposition (MOCVD) technique. The next section explains synthesis 
techniques commonly used to grow zinc oxide layers. The following section describes important applications of ZnO 
currently under investigation such as thin film transistors (TFTs) and HEMTs, UV emitters and detectors, and neutron 
detection. Details of these applications are given and important experimental results presented by our group as well as 
other relevant reports are reviewed and discussed. 

2. SYNTHESIS TECHNIQUES AND CHARACTERIZATION 
Various established methods of semiconductor crystal growth have been used by different groups to grow high quality 
ZnO on a wide range of substrates. Molecular beam epitaxy (MBE) is one of the best technologies to obtain ZnO thin 
films with high crystallinity and purity. Heterostructure devices were prepared by growing a single layer of MgZnO on 
Zn-polar ZnO single crystal substrates for HEMT applications [8]. Another group contemporaneously achieved 
fabrication of MgZnO/ZnO heterostructures on c-plane sapphire substrates by radical source MBE [9]. Recently, our 
group has experimentally investigated bulk ZnO grown by MBE to confirm theoretical predictions of the true origin of 
intrinsic n-type conductivity in ZnO [34]. The proven repeatability of experimental results proves the reliability of the 
MBE method. The main disadvantages of MBE are the high cost to employ and maintain the system, the low growth 
rate, and the graded edges of the as-grown film. 

Evaporation of ZnO is particularly difficult because of its high melting point. Therefore, magnetron sputtering or plasma 
vapor deposition (PVD) is an alternate method to grow ZnO films [35, 36]. In this process, a positively charged source 
plasma is generated and accelerated towards negatively charged electrode (target). The contamination problem caused by 
diffusive transport is a shortcoming of magnetron sputtering. Furthermore, the sputtering method lacks reproducibility 
due to little control over the film structure [10]. Multiple layer growth is challenging in magnetron sputtering as 
compared to pulsed laser deposition (PLD) and MOCVD. The PLD technique has been used for over a decade to deposit 
high quality ZnO films. The principle of this technique is very simple: high power laser pulses are used to remove 
material from the surface of the target material (ablation), which is then deposited on the substrate. A recent 
experimental study has been presented by Vinodkumar et al. [37] on structural, optical, and electrical characterization of 
porous nanostructured ZnO thin films prepared by PLD. The films grown by PLD are free of impurities with good 
stoichiometric control but inconsistency in thickness and other characteristics of the film is a drawback. It is also a big 
challenge to deposit uniform films on large area wafers using PLD. 

MOCVD, also known as metal organic vapor phase epitaxy (MOVPE), is a well-established technology for the chemical 
vapor deposition of ZnO thin films. This technique has many advantages; for example, high controllability of the film 
structure, deposition over large areas, feasibility of commercial scale production, and high temperature growth. Using 
MOCVD, ZnO layers with improved quality compared to MBE growth can be produced with better reproducibility and 
growth rate. In 2006, we demonstrated a detailed study of reactor dynamics and kinetics of ZnO growth [38]. The 
influences of growth temperature, reactor pressure, VI/II ratio, and disk rotation speed on morphological, optical, and 
electrical properties of ZnO films were investigated. An optimal growth window was determined based on calculations 
and experimental results. Dry etching of ZnO was also performed to analyze the stability of ZnO in hydrogen at different 
temperatures. ZnO thin films were grown on c-plane sapphire substrates as well as on GaN buffer layers to evaluate the 
effects of GaN interlayers on the structural and optical properties of the ZnO epilayers. Diethylzinc (DEZn) and oxygen 
were used as chemical sources and nitrogen as the carrier gas. The growth temperature was varied from 300 to 600 °C 
and chamber pressure was varied from 30 to 60 Torr. The disk rotation speed was varied in the range of 600 to 1200 
rpm. By changing the oxygen flow rate, VI/II ratio was varied from 220 to 900 with constant DEZn flow rate of 
18µmol/min. Figure 1 shows simulation results for the Reynolds Number (Re) of different growth conditions to estimate 
initial growth windows for disk rotation speed and reactor pressure. Diffusion of adatoms onto the substrate depends on 
the boundary layer thickness, which decreases with increasing Re. The influence of growth temperature on growth rate is 
illustrated in Figure 2. Growth temperature should have negligible impact on growth rate because sufficient energy is 
already present in the system since DEZn is completely decomposed at 400 °C. However, growth rate considerably 
increases with rise in temperature, signifying kinetically oxygen-limited growth. The dependence of carrier concentration 
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and mobility on VI/II ratio is depicted in Figure 3. The similarity in carrier concentration and RMS surface roughness at 
higher VI/II ratio suggests that the carrier concentration is mainly due to surface states. Readers should refer to our 
previously published results for detailed experimental analysis of structural and optical properties of ZnO using high 
resolution X-ray diffraction (HRXRD), Raman spectroscopy, photoluminescence (PL), optical transmission, 
ellipsometry, atomic force microscopy (AFM), and scanning electron microscopy [38, 39]. In a recent study we have 
grown ZnO thin films with different thicknesses on sapphire substrates using MOCVD in our lab [33]. It was 
demonstrated that crystal quality degrades with an increase in thickness of the ZnO film due to the poor lattice match 
with the sapphire substrate and growth rate substantially decreases with an increase in growth pressure. Deterioration in 
crystal quality with increased film thickness is depicted in Figure 4. The film quality can be improved by introducing a 
thin low temperature buffer layer or MgZnO layer between ZnO and sapphire substrate [10]. We have also reported 
some experimental results regarding unintentionally doped n-type and nitrogen doped p-type ZnO films [40-42]. Hall 
measurements revealed that n-type films with carrier concentrations of 6.57×1018 cm-3 and p-type films with carrier 
concentration of 4.24×1014 cm-3 were achieved. Other researchers have also demonstrated n-type as well as p-type ZnO 
thin films but it is still a challenge to attain reproducible and highly conductive p-type ZnO films and nanostructures. 

 
Figure 1. Calculated values of the Reynolds number for different growth conditions. Reynolds number decreases with increasing 
chamber pressure [38]. 

 
Figure 2. Influence of growth rate on growth temperature. Increase in growth rate with growth temperature suggests kinetically 
oxygen-limited growth [38]. 
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Figure 3. Dependence of electrical properties of ZnO film on VI/II ratio. Same trend in carrier concentration and RMS surface 
roughness at higher VI/II ratio proves that carrier concentration is mainly due to surface states [38]. 

 
Figure 4. Transmission spectra of ZnO films for three different thicknesses. The annihilation in transmission is mainly because of 
degradation in crystal quality due to poor lattice match between ZnO and sapphire [33]. 
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3. APPLICATIONS 
3.1 TFTs and HEMTs 

Problems related to p-type doping of ZnO are well known. The FETs may not need pn junctions thereby avoiding p-type 
doping of ZnO. Therefore, the most feasible and practical application of ZnO is to fabricate unipolar devices, such as 
high frequency and high power FETs. Major improvements in the electrical and optical properties of field-effect devices 
due to the formation of a two-dimensional electron gas (2DEG) at the heterostructure interface of ZnO and MgZnO in a 
strained ZnO potential-well have been reported [43]. In 2008, Tsukazaki et al. achieved high electron mobility (14000 
cm2V-1s-1) at low temperature due to strong two-dimensional confinement of electrons by growing ZnO/MgZnO 
heterostructures using plasma induced MBE [8]. This work exhibits the possibility of ZnO based high performance 
HEMTs. Figure 5 shows dependence of mobility and carrier concentration of ZnO/MgZnO heterostructures on 
temperature as demonstrated by Tsukazaki et al. A similar study demonstrated the mechanism and origin of the two-
dimensional electron gas in ZnO/MgZnO heterostructures [9]. The increase in carrier concentration and mobility with 
incorporation of Magnesium, reported in this study, is illustrated in Fig. 6. The highest carrier concentration and mobility 
at room temperature were obtained for Magnesium fraction of 0.61. 

A scheme for bottom-gated ZnO TFTs with enhanced electrical characteristics grown by MOCVD on a glass substrate 
was also proposed [10]. The schematic is shown in Fig. 7, which illustrates incorporation of a thin MgZnO layer at the 
channel-gate insulator interface. The mobility, on/off current ration, turn on voltage, and sub-threshold slope for ZnO 
TFTs without MgZnO layer were 2.3 cm2V-1s-1, 6.4×107, -6.75 V, and 0.78 V/dec respectively. The same features for 
ZnO TFTs with MgZnO layer (Fig. 7) were measured as 9.1 cm2V-1s-1, 2.3×108, -2.75 V, and 0.38 V/dec respectively. 
The results achieved in this study are very promising for HEMT-type TFTs based on ZnO/MgZnO heterostructures on a 
glass substrate. These TFTs can be used in displays, ultraviolet detectors, and transparent electronics. 

 
Figure 5. Influence of temperature on electron mobility and electron concentration (inset) of ZnO/MgZnO heterostructures for 
two different compositions (5% and 8%) of Mg [8]. 
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transmission from the sharp absorption edge through the visible portion of the spectrum was observed. These 
measurements suggest that n-type ZnO is a perfect candidate for optical device applications. Post annealing of p-type 
ZnO films improved I-V characteristics significantly. Figure 8 depicts EL spectrum obtained from devices driven by 40 
mA current. A dominant EL peak can be observed at 384 nm which was attributed to recombination from shallow donors 
to the N luminescent centers on the p side of the junction. In 2010, Namkoong et al. used MBE to prepare heterostructure 
p-GaN/InGaN/n-ZnO LEDs [49].  A representative PL spectrum and I-V characteristics of the heterojunction device are 
shown in Figure 9(a) and EL spectra for two different forward currents are presented in Figure 9(b). The authors have 
attributed the broad yellow band to magnesium related defects in Mg-doped GaN layers. 

 
Figure 8. EL spectrum from ZnO p-n junction LED [48]. 

 

 
Figure 9. Electrical and optical characterization of heterostructure p-GaN/InGaN/n-ZnO LEDs. (a) I-V characteristics of the 
heterojunction device. Inset shows PL spectrum measured at room temperature (b) EL spectra of the device for two different 
forward currents [49]. 
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3.3 Neutron Detection 

Neutron detection has numerous applications in various fields; for example, instrumentation of nuclear power and 
research reactors, oil reservoir exploration, investigations in particle physics, morphological characterization of 
materials, radiation safety, and cosmic ray detection. Since neutrons are not charged particles, their detection is 
challenging compared to detecting charged particles and ionizing radiation. Scintillation is one of the recognized 
techniques for neutron detection over large energy range [50]. ZnO has been investigated for decades for scintillation 
properties due to its ultra-short decay time and near-band-edge emission. In 2007, Edith et al. have demonstrated 
synthesis and characterization of ZnO:Ga scintillator exhibiting high near-band-edge luminescence and decay time less 
than 2 ns [51]. In 2011 we reported highly efficient, portable, and economically feasible ZnO based neutron detectors 
which can replace conventional 3He tube technology [52]. A range of ZnO crystals have been grown using the MOCVD 
technique to investigate the effects of different dopant levels on light transmission, light yield, and decay times. The 
large exciton binding energy of ZnO results in uniform luminescence of ZnO scintillator up to 500 °C and fast electron-
hole recombination during scintillation process. An intrinsic rise time of 30 ps and a decay time of 0.65 ns have been 
observed which are faster than all other organic or inorganic scintillators available today [52]. Figure 10 illustrates 
experimental neutron response of undoped ZnO with and without a polyethylene layer. Responses are graphed for 60Co 
gamma spectrum and PuBe neutrons spectrum. Calculations revealed that doped ZnO scintillators can have detection 
efficiencies approaching 100% for thermal neutrons with negligible gamma ray response. The gamma rays response can 
be minimized by using a thin ZnO epitaxial film. The experimental studies ascertained that ZnO based scintillators for 
neutron detection can be more efficient with larger surface area and cheaper to fabricate compared to 3He tubes. 

 
Figure 10. Neutron response of undoped ZnO with and without a polyethylene layer. Responses are given for 60Co gamma 
spectrum and PuBe neutrons spectrum [52]. 

3.4 ZnO as Substrate and Interlayer 

The wurtzite structure with tetrahedral geometry is the stable form of ZnO with lattice parameters very close to those of 
GaN, an important wide bandgap semiconductor. This allows fabrication of useful heterostructures of ZnO and GaN for 
different optical and electronic devices. Also, the c/a ratio of ZnO wurtzite structure is very close to ideal ratio that 
supports preparation of stable structures. As mentioned in section 1, our group has presented several studies about use of 
ZnO as a substrate material for GaN and InGaN [1-4, 17-25]. The mismatch between wurtzite structures of ZnO and 
GaN is only 1.8% as compared to 13.8 % mismatch between GaN and (0001) Sapphire. 
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Figure 11. HRXRD 2θ/ω scan of InGaN layer with indium compositions of 17%, 23% and 27% grown by MOCVD on ZnO 
substrates. The samples were grown at 720 °C, 700 °C, and 680 °C respectively [18]. 

 
Figure 12. Improvement in the characteristics of annealed MgZnO/Ag contacts as compared with annealed Ag contacts. (a) 
Forward I-V characteristics (b) reverse I-V characteristics (c) reflectance percentage (d) output power of the LED [54]. 
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InGaN has a perfect lattice match with ZnO in a-axis direction with 18% indium composition [20]. The thermal 
expansion coefficient of ZnO and GaN is similar resulting in almost zero thermal strain. Furthermore, ZnO substrates are 
conductive allowing for multiple electrodes on both surfaces for increased current spreading and improved electrical 
quality of the device. Therefore, ZnO is a perfect substrate for GaN and InGaN devices as compared to sapphire and SiC. 
Figure 11 shows HRXRD scan of InGaN layer with three different indium compositions grown by MOCVD on ZnO 
substrates [18]. We have also successfully grown AlGaN/GaN superlattice structures on ZnO substrates using MOCVD 
for green emitter applications [53]. The improvement in structural and optical properties of the superlattices was verified 
by XRD, AFM, and PL measurements. 

Silver (Ag), due to its high reflectivity and good Ohmic behavior, is the most commonly used back contact for flip-chip 
LEDs. But Ag electrodes experience problems of agglomeration and interfacial voids upon annealing, which in turn 
degrade electrical and optical performance of the device. It was demonstrated that LEDs fabricated with MgZnO 
interlayer between GaN and Ag contact exhibited better performance as compared with the LEDs without interlayer [54]. 
Figure 12 shows difference between the characteristics of annealed MgZnO/Ag contacts and annealed Ag contacts. 

3.5 Thermoelectric Power Generation 

Thermoelectric (TE) effect is the transformation of temperature difference to electromotive force (Seebeck effect) and 
vice versa (Peltier effect). Generation of electricity using TE effect is one of the promising methods to obtain usable 
energy directly from waste heat and natural heat resources consequently improving the efficiency of energy use and 
reducing the consumption of main sources of CO2 emission. It is anticipated that TE power generation can greatly 
contribute to overcoming the unequivocal problems of global warming and climate change [55]. Thermoelectric 
materials are characterized on the basis of a dimensionless figure of merit that depends on temperature ‘T’ and expressed 
as ZT = S2σTκ-1 where S, σ, and κ are Seebeck coefficient, electrical conductivity and thermal conductivity respectively, 
the parameters associated with the material. The semiconductors used for thermoelectric cooling like Bi2Te3, PbTe and 
related materials are toxic, expensive, heavy and can melt or oxidize at high temperatures, therefore, cannot be employed 
for widespread heat harvesting in air atmosphere. Oxide materials are most promising candidates in these conditions. 
Compared to p-type oxides, n-type oxides have not been developed yet despite continuous efforts [55]. In such an 
attempt, Yamaguchi et al. have investigated thermoelectric properties of Al-doped ZnO co-doped with transition metals 
Fe, Ni, and Sm [56]. Experimental results of the TE parameters are illustrated in Figure 13. The Seebeck coefficient was 
improved by Sm co-doping and electrical conductivity was enhanced by Ni co-doping. The κ value at 1073 K for Ni-co-
doped ZnO:Al was 77% of that for ZnO:Al. The ZT value of 0.126 was achieved at 1073 K for Ni-co-doped ZnO:Al 
representing an improvement by a factor of 1.5 as compared to ZnO:Al. Nevertheless, electron mobility was deteriorated 
with co-doping transition metals. Similarly, Tsubota et al. have reported maximum ZT value of 0.3 achieved at 1000 °C 
[57].  In our Lab, we have studied TE characteristics of ZnO:Al for different doping concentrations at room temperature. 
The impact of carrier concentration on mobility (μ), electrical conductivity, Seebeck coefficient, and power factor (S2σ) 
is shown in Figure 14(a) and 14(b). It can be noticed that Seebeck coefficient linearly decreases with increasing carrier 
concentration which is commonly observed TE behavior. The highest Seebeck coefficient of 827 μV/K was measured at 
carrier concentration of 1.38×1016 cm-3. The power factor increases with carrier concentration except one point 1×1017 
cm-3. This can be attributed to major trade-off between Seebeck coefficient and mobilitywhich is lowest at the same 
carrier concentration (Figure 14(a)). The highest value of power factor was found to be 0.748×10-4 Wm-1K-2 at carrier 
concentration of 2.04×1017 cm-3. The results presented by Yamaguchi et al., Tsubota et al. and our group are encouraging 
but still extensive efforts are required to make ZnO feasible for TE power generation. 

One effective way to achieve high ZT is by engineering nanostructured materials. The mean free path of phonon 
(responsible for thermal conduction) is larger by few orders than mean free path of electrons (associated with electric 
conduction). Nanostructures of different sizes can be incorporated in the material to enhance boundary scattering of 
short-, medium-, and long-wavelength acoustic phonons causing reduced κ without affecting electron transport. 
Nanostructures have been successfully employed to reduce κ resulting in improved ZT value [58, 59]. Due to unique 
physical properties and highly stable wurtzite crystal structure, ZnO is a material whose nanostructural configurations are 
much richer than any known nanomaterial including carbon nanotubes [60]. Using vapor transport process while 
controlling the growth kinetics, temperature, and chemical composition of precursors, a variety of nanostructures can be 
synthesized [61]. Therefore, ZnO nanostructures can be considered as potential candidate for TE devices. 
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4. CONCLUSION 
We have presented a brief review on synthesis and applications of ZnO. After highlighting unique characteristics of 
ZnO, we have discussed commonly used techniques for its growth including MBE, magnetron sputtering, and PLD. The 
most reliable and feasible technique for ZnO growth, MOCVD, was emphasized. Previous experimental results 
regarding growth and characterization of ZnO using MOCVD in our lab as well as results reported by other groups were 
presented in detail. Modern applications under investigation including TFTs and HEMTs, UV emitters and detectors, and 
thermoelectric power generation were explained and related experimental results were presented. The use of ZnO in 
neutron detection, a novel application, previously reported by our group was illustrated with experimental evidence. 
Moreover, suitability of ZnO as substrate or interlayer material was also discussed summarizing our previously reported 
results. The review shows that ZnO is undoubtedly a quickly evolving material in semiconductor field. However, 
concentrated efforts are required to understand the principles behind growth of doped and undoped ZnO films and 
nanostructures to make it acceptable for the semiconductor industry. 
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